当前位置: 首页 > 最新文章 > 正文

基本算法——回溯算法

深度优先搜索算法利用的是回溯算法思想。不过这里说的搜索,并不是狭义的指我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。回溯的处理思想,有点类似枚举搜索。八皇后问题就是期望找到所有满足这种要求的放棋子方式。回溯算法非常适合用递归代码实现在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。回溯法应用当问题是要求满足某种性质的

admin

深度优先搜索算法利用的是回溯算法思想。不过这里说的搜索,并不是狭义的指我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。回溯的处理思想,有点类似枚举搜索。八皇后问题就是期望找到所有满足这种要求的放棋子方式。回溯算法非常适合用递归代码实现在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。回溯法应用当问题是要求满足某种性质的所有解或最优解时,往往使用回溯法。它有“通用解题法”之美誉。显然,这个问题已经无法通过贪心算法来解决了。

深度优先搜索算法利用的是回溯算法思想。这个算法思想非常简单,但是应用却非常广泛。它除了用来指导像深度优先搜索这种经典的算法设计之外,还可以用在很多实际的软件开发场景中,比如正则表达式匹配、编译原理中的语法分析等。

除此之外,很多经典的数学问题都可以用回溯算法解决,比如数独、八皇后、0-1背包、图的着色、旅行商问题、全排列等等。既然应用如此广泛,我们今天就来学习一下这个算法思想,看看它是如何指导我们解决问题的。

笼统地讲,回溯算法很多时候都应用在“搜索”这类问题上。不过这里说的搜索,并不是狭义的指我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。

回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

经典的回溯例子——八皇后问题

我们有一个8x8的棋盘,希望往里放8个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子方式。

基本算法——回溯算法

我们把这个问题划分成8个阶段,依次将8个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前的方法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种方法,继续尝试。

回溯算法非常适合用递归代码实现

在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。尽管回溯算法的原理非常简单,但是却可以解决很多问题,比如我们开头提到的深度优先搜索、八皇后、0-1背包问题、图的着色、旅行商问题、数独、全排列、正则表达式匹配等等。如果感兴趣的话,你可以自己搜索研究一下,最好还能用代码实现一下。如果这几个问题都能实现的话,你基本就掌握了回溯算法。

回溯法应用

当问题是要求满足某种性质(约束条件)的所有解或最优解时,往往使用回溯法。

它有“通用解题法”之美誉。

解决一个回溯问题,实际上就是一个决策树的遍历过程。你只需要思考 3 个问题:

1、路径:也就是已经做出的选择。

2、选择列表:也就是你当前可以做的选择。

3、结束条件:也就是到达决策树底层,无法再做选择的条件。

代码方面,回溯算法的框架:

result = []func backtrack(路径, 选择列表){    if 满足结束条件{        result.add(路径)        return    }    for 选择 range 选择列表{        做选择        backtrack(路径, 选择列表)        撤销选择    }}

1.0-1背包问题

0-1背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是今天讲的回溯算法。动态规划的解法我下一节再讲,我们先来看下,如何用回溯法解决这个问题。

0-1背包问题有很多变体,我这里介绍一种比较基础的。我们有一个背包,背包总的承载重量是Wkg。现在我们有n个物品,每个物品的重量不等,并且不可分割。

我们现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

实际上,背包问题我们在贪心算法那一节,已经讲过一个了,不过那里讲的物品是可以分割的,我可以装某个物品的一部分到背包里面。今天讲的这个背包问题,物品是不可分割的,要么装要么不装,所以叫0-1背包问题。显然,这个问题已经无法通过贪心算法来解决了。我们现在来看看,用回溯算法如何来解决。

对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于n个物品来说,总的装法就有2^n种,去掉总重量超过Wkg的,从剩下的装法中选择总重量最接近Wkg的。不过,我们如何才能不重复地穷举出这2^n种装法呢?

这里就可以用回溯的方法。我们可以把物品依次排列,整个问题就分解为了n个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。描述起来很费劲,我们直接看代码,反而会更加清晰一些。

package mainimport (   "fmt")var maxW int = 0func main() {   var a = []int{1: 5, 2: 11, 3: 21, 4: 31, 5: 61, 7: 82, 9: 11, 12: 53}   F(0, 0, a, 10, 100)   fmt.Println(maxW)}//cw表示当前已经装进去的物品重量的和//i表示考察到哪个物品了//w背包的重量//items表示物品的种类//n表示物品个数//假设背包可承受重量100,物品个数10,物品重量存储再数组a中//F(0,0,a,10,100)func F(i int, cw int, items []int, n int, w int) {   if cw == w || i == n { //cw==w表示已经装满,i==n表示考察完所有物品      if cw > maxW {         maxW = cw      }      return   }   F(i+1, cw, items, n, w)   if cw+items[i] <= w { //已经超过背包承受的重量时就不要再装了      F(i+1, cw+items[i], items, n, w)   }}


上一篇: ASP.NET 前台与后台互相调用方法 下一篇:大哥对不起大哥我错了图片(大哥我错了别)
返回顶部